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SUMMARY 

The equations and logic used for the digital computer simulation of environmental pressure 

effects on an earth-orbiting satellite a r e  presented. Although they were derived for use 

with the flexible body structural dynamical simulation, they a re  equally applicable to any 

combination of rigid, articulated, and flexible bodies, within the limitations described. 

\? The environmental pressures analyzed here include solar radiation, aerodyrramic, and 

earth's albedo pressures. A l l  of these effects involve a pressure due to exchange of 

momentum between the satellite and an incident flux of particles o r  photons, 

the mathematical models for their effects a r e  analogous. Because of this,  the same 

equations can be used for force and torque in each analysis. 

the engineering analysis, programming effort, and checkout of the program, but probably 

does not affect computer running time appreciably. 

Therefore, 

This is a great economy in 

The scheme for combining the simulation of the three effects is explained by referring to 

the logic chart of Figure 1. The inclusion of any effect in a particular computer run is an 

option of the user. If the choice is to include an effect, it is still excluded under particular 

circumstances, as  indicated in the chart. 

peculiar to that effect a re  performed first. 

used for shadow geometry, forces, and torques. 

For each of the effects, the computations 

Then a common set of equations and logic is 
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SECTION 1 

INTRODUCTION 

The simplified analyses of satellite body shadows and of earth's albedo effects were performed 

under Contract No. NAS-8-21043 with NASA-Marshall Space Flight Center, Huntsville, 

Alabama. This contract was awarded to the General Electric Company's Spacecraft Department 

for studying the dynamics of an elastic spacecraft. The interactions of structural dynamics, 

attitude dynamics, and orbital dynamics a re  of special interest. 

The analyses of aerodynamic and solar radiation pressure effects were largely part  of the 

in-house effort in making digital simulations of passively oriented systems. Only such results 

as are peculiar to the present contract are included here. The more basic work is described 

in various reports which a re  referenced throughout this document. 
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SECTION 2 

SOLAR RADIATION PRESSURE 

The computation of solar forces and torques takes into account the apparent sun position, 

the reduction of solar flux in the earth’s penumbra, the absence of flux in the umbra, the 

surface characteristics of various parts of the satellite, structural deflections, and the 

effects of complete o r  partial shading of one part of the satellite by another. 

The unit vector in the direction of the solar flux is designated s. The components of s 
in the X Y Z orbital frame and in the % ? 2 satellite frame are  known at any 

instant as components of a state vector. The satellite is in the earth’s umbra if 

- - -  
0 0 0  m m m  

- s o x o  - 2 - (RS - RE) + J1-(%,” J 1 -  ( R s - R E )  (2-1) 
RSE RO RO RSE 

where: 

R is the earth’s radius, 

R is the sun’s radius, 

RsE is the distance from the heliocenter to the geocenter, 

R 

E 

S 

is the geocentric distance of the satellite. 
0 

If the satellite is in the earth’s umbra, the solar forces and torques a re  all equal to zero. 

The satellite is in full sunlight if 

- s *  xo - 5 - ]q]m - RE (RS + RE) 

RO RSE RSE RO 
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-8 -5 pounds per square foot, o r  4.56 x 10 In this case, the solar pressure, P 

dynes per square centimeter. 

is 9.53 x 10 S’ 

If neither of the above conditions holds, the satellite is in the earth’s penumbra. The 

intensity is computed from the following equations which are simplified versions of those 

in Section 4 of Reference 1. 

RE 

RO 
s in#  = - , 

- 
xO’ cos /L = s 

(2-3) 

The intensity is then 

- s i n p  cos p 1 , - 1 1  - Ps - Po [ -  - 
min J 2 n “min min 

where P 

negative acute angle. 

has the numerical value given previously, for  P and ,8 is a positive o r  
0 S’ min 

The computation of solar radiation pressure forces and torques is described in Section 6. 
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SECTION 3 

AERODYNAMIC PBESSURE 

I The computation of aerodynamic forces and torques takes into account the relative wind 

velocity, the variation of atmospheric density with geodetic altitude, the surface character- 

istics of various parts of the satellite, structural deflections, and the effects of complete or  

partial shielding of one part of the satellite by another. 

i The analysis is based on free flow, and is therefore valid only at altitudes of about 200 kilo- 

meters or higher. The atmospheric density model is based on the work of Jacchia, a s  

reported in Reference 2. The equations for the atmospheric density, in the foot-pound- 

second system, a re  given in  Sections 17 .2  and 1 7 . 3  of Reference 3. 

The relative wind velocity, satellite altitude, attitude, latitude, and structural deflections 

a re  known at  any instant a s  components of a state vector. 

The aerodynamic pressure is 

n 

where p is the atmospheric density and V is the relative wind velocity. 

derived in Section 1 7 . 3  of Reference 3, and the basic assumptions a re  stated there. 

This equation is A 

The computation of aerodynamic forces and torques is analogous to that of solar forces and 

torques, a s  described in Section 6. 

9/10 



SECTION 4 

ALBEDO PRESSURE 

I 

The computation of albedo forces and torques takes into account all of the factors which 

affect solar forces and torques and, in addition, the geometry and characteristics of that 

portion of the earth's surface which is both illuminated by the sun and visible from the 

satellite. The major differences between the albedo pressure and solar radiation pressure 

are: (1) the albedo flux comes from various directions while the solar flux comes from a 

single direction, and (2) the albedo flux varies in intensity while the solar flux is practically 

constant whenever the sun is completely visible. The varying direction and magnitude of the 

albedo flux complicate the analysis of its effects on the spacecraft. To keep the analysis 

economical and usable, some gross approximations a re  made. These are  applicable to large 

digital computer solution, and may be refined at a future date to obtain better accuracy at the 

cost of greater computer running time, without modifying the basic analysis. 

The approach taken is to divide into zones that portion of the earth's surface which is visible 

from the satellite. If a particular zone is sunlit, then it acts as a reflector, sending flux to 

the satellite. The flux from each zone is considered parallel, and of an intensity correspond- 

ing to the total value for that zone. The effect on the satellite of the flux from each zone is 

then computed in the same manner as the effect of the solar flux. Such effects include forces 

and torques or  their absence at particular locations because of body shadows. 

For convenience in computing the albedo flux vector at the satellite, a reference frame 

described by the X Y Z orthonormal triad is used. The X Y plane contains the sun, the 

earth, and the satellite. The kA unit vector coincides with the X unit vector, and the ? 
unit vector is such that the solar flux has a positive ? 
a right-handed system. 

- - -  - -  
A A A  A A  

A 0 
component. The 5 

A A 
unit vector forms 
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The rotational transformation from the orbital reference frame to the albedo reference frame 

is 

where 

0 0 

are the direction cosines of the solar flux vector in the orbital reference 

frame. If the solar flux is parallel to x0, then the albedo reference frame is undefined, but 

it is not needed. In this case, the A 

andsxo' sYo' szo 

matrix is set  equal to the identity matrix for convenience. I 41 

The components of the solar flux unit vector in the albedo reference frame are  computed from 

12 
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2 2 
'YA 

SZA = 0. 

(4-4) 

(4-5) 

(4-6) 

The geometry of the albedo analysis is partially illustrated by Figure 4-1. The portion of 

the earth's surface seen from the satellite has cylindrical symmetry about the % axis. The 

surface is divided into annular surfaces, which are further subdivided into zones, as shown 
th in Figure 4-1. The average value, over the I 

from the 2 axis, is 

A 

annulus, of the declination angle p ,  measured 
th The average value of the azimuth angle @ in the J segment of the 

el. A c I' 
I~'' annulus is @ Then the unit vector pointing from the geocenter to the center of this 
th CIJ' 

IJ~" surface zone is 

- - 
R = x A cos p CI + Y A sinpCIcos CIJ + ZA sin p CI s i n g  CIJ' (4-7) 

th The cosine of the angle of incidence of solar rays at the center of the IJ  zone is 

CIJ' + SyA sin p CI CI cos @ S (-R) = SxA COS p (4-8) 

If the right-hand member of this equation is positive, the center of the zone is sunlit. There- 

fore, the entire zone is considered sunlit. Otherwise, it is considered shaded. 

If the zone is sunlit, the magnitude and direction of the albedo flux reflected from the area to 

the satellite are computed (as described later). If the zone is shaded, all computations for 

that zone are omitted (for the present time interval). 
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SATELLITE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 4-1. Albedo Geometry 

A systematic method for determining and designating the zones on the earth's surface is 

required. The number of annular rings (such as the one illustrated in Figure 4-1) is N 

This number controls the mesh fineness and therefore, the accuracy of the albedo analysis. 

The outer boundary of the last ring corresponds to the edge of the region visible from the 

satellite. The value of p corresponding to this boundary is computed from 

B' 

RE 

Ro 
- -  cos p - 

Max (4-9) 

In order to divide the visible portion of the earth's surface into equal areas, each annulus, 

except the first, is subdivided as explained below. The first annulus is a circle whose 

center is at the subsatellite point. 



The range of p within each annulus is 

'Max A B  = ZN -1 B 

Figure 4-2 illustrates the case where N 

three. In this case, the second annulus is 

subdivided into eight equal segments, and 

the third is subdivided into sixteen equal 

segments. 

is B 

The ratio of the area of the whole visible 

region to that of the center circle is 

2 
(2N - 1) B 

Figure 4-2. Zone Geometry 

(4-1 1) 

The ratio of the projected area of the Ith ring to that of the center circle is 

(4-12) 
2 2 

= (21 - 1) - (21 - 3) = 8 (I - 1). 
NAI 

This is also the number of segments in  the Ithring, such that each has the same area as the 

center circle. The average value of p for the I ring is 
th 

p,, = AB (1 - 1). (4-1 3) 

These average values of B correspond to the dashed circles in Figure 4-2. Table 4-1 lists 

the relations for any number of rings up to six The semi-range of p within each ring is 

(4-14) 
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Table 4-1. Annulus Parameters 

2 B Number of Rings, N 

2 
3 
- ap 

P-MW 

3 

2 
5 
- 

Area ratio of entire area 

Area ratio., N ,of outer annulus A 

The segments of each annulus are  numbered beginning at the ? 
the z 
is 

axis and continuing toward 

axis. For the Jth segment in the .Ith ring, the center value of the azimuth angle, 4, 
A 

A 

9 25 

8 16 

- T (25 - 1) - 
'CIJ NAI 

The semi-range of @ within each segment is 

(4-15) 

(4-16) 

The geocentric coordinates of any zone on the earth's surface lie within the following ranges: 

PCI - PR ' P ' PC, + PR, (4-17) 

- @  s ' S  ($ +($,. (4-18) "CIJ RI CIJ 
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The magnitude at the satellite of the albedo pressure, due to reflection from the IJth zone, is 

The direction cosines of this vector flux, in the albedo reference frame, a re  A AIJ' 
These a re  all computed as described later. The direction cosines in the 

'AIJ* 

AIJ' BAIJ, and 

satellite mair- re fe rz~ee  friliiie are computed from 

*AIJ 

B~~~ 

c -  

= [.1' 

where T indicates the tranpose of the matrix. 

th The computation of the albedo flux from the IJ 

follows the general method of Reference 4. 

rill now b describ 3. Th d 

(4-19) 

ivation 

The intensity of the incident solar flux at any sunlit point on the earth's surface, expressed 

as a pressure, is P multiplied by either member of Equation 4-8. The area of any surface 

element is 
S 

2 
dAG = RE sin p d p d 0 (4-20) 

2 2 
The total flux reflected from this area element is d F = A P R sin p (-R) d p d 0, E E S E  
where A is the earth's albedo, approximately 0.34. E 
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The flux density at the satellite is computed with the aid of the vector diagram of Figure 4-3. 

The geocentric distance of the satellite is R 
0' 

The vector from the earth surface element to 

the satellite is 

SATELLITE 

- - + 

Q = X A R o - R  RE 
- 

= X (R - RE COS p) 
A 0  

A 
- 

-Y R s inp  cos @ A E  

GEOCENTER - 
- Z  R s inp  sin @ (4- 2 1) Figure 4-3. Albedo Geometry, Vector Diagram 

A E  

The magnitude of this vector is 

- 2 R R cosp. Q = d G =  4R: + RE O E  

-4 

The unit vector along Q is 

-b 

- Q  Q = a  

(4-22) 

(4-23) 

+ 
For Lambert Law reflection, the flux at any point along Q, impinging on an area which 

subtends a solid angle a, is 

(4-24) d4 pA = (g  Q) d 2 FE a 

18 



For a unit area at the satel 

1 Q = -  
9 9  

QY 

replaces a Also, 

(4-25) 

(4-26) 

The vector flux density at the satellite, expressed as a pressure, is Equation 4-24 multiplied 

by the unit vector 6. 

- - 
[%A (Ro - RE cos p) - Y R sin p cos @ - Z R sin p sin @ A E  A E  

(4-27) 

The last two factors are the only ones which are functions of @. These are multiplied 

together, and the result is integrated with respect to @ over the range given by Equation 4-18. 

It is convenient to define the following integrals as functions of @ RI: and of @ 
CIJ 

F21J = {sin@ d @ = 2 s i n @  CIJ s i n @  RI’ 

F31J = ICOS @ d  @ = 2 cos @ CIJ s i n @  RI’ 

(4-28) 

(4-29) 

(4-30) 
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RI' 
= / s i n @  cos @ d @  = 2 sin @ 

= /cos2 @ d@ = 8,, + sin @ COS @ (cos @ 

COS ($ sin @ cos @ 
F41J CIJ CIJ Fu 

F51J RI RI CIJ 
2 2 

- sin @cclT), 

where all integrations are over the range stated. 

The result for the IJth zone is then 

2 

E E s i n p  (R cos p - R ~ )  dp xA ( R ~  - R~ cos p) I- P A R  
- - 

0 
7~ Q4 

(FIIJ 'XA cos p + F 3I j  SyA s in  P )  

- 
- Y A E  R s i n p  (F31J SxA cos p + F 5IJ 'YA sin p) 

4I j  SyA sin P)  1 - 
- ZA s in  p (F21J SxA cos p + F 

This expression is of the form 

+ - 
S )  - 

@AIJ - xA (dGmJ 'XA +dGXYIJ YA 

+ 'A (dGYXIJ 'XA +dGYYIJ S )  YA 

+'A (dGZXIJ 'XA -k dGZYIJ s YA ) *  

20 
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(4-32) 

(4-33) 

(4-34) 



Each of the functions G 

the range indicated by Equation 4-17. Each annulus I will give a different result, as well as 

each azimuthal segment J. This is because of the functions F in Equation 4-33. (It 

should be noted that Q is a function of p.) 

is determined by numerical integration with respect to p ,  over _ _  - u 

-IJ 

All of the computations up to and including the computations of the G 

separate computer program, o r  i n  an initialization module of the main program. The 

resulting 6 (2 NB - 1) values of the G 

module of the main program. 

should be done by a --IJ 

2 are then stored for use in the environmental --IJ 

At each time interval for which it is desired to compute the albedo forces and torques, the 

a re  computed from Equations 4-4 and 4-5. Each earth zone is components, 

then treated as an auxiliary "sun. The multiplication of the G by Sm and SyA yields 

the components of 

and S YAY 

--IJ 

th The magnitude of the albedo pressure, due to reflection from the IJ zone, is 

Its direction cosines are 

A~~~ 

B~~~ 

'AMJ 

'AYIJ 

'AM ' 

(4-35) 

(4-36) 

(4-37) 

(4-38) 
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and 

(4-39) 

The direction cosines in the satellite main reference frame are computed from Equation 4-19. 

The information that is available f o r  the solar flux is now available for the albedo flux 

from each zone. 

The computation for the albedo forces and torques (due to reflection from each zone) then 

proceeds in the same manner a8 for solar effects, as described in Sections 5 and 6. When 

the effects for every sunlit zone have been computed, they are added vectorially to obtain the 

total effects. 

It is emphasized that the total effects can not be computed from a flresultantfl flux which is 

the vector sum of the zone fluxes. Superposition of fluxes from different directions is not 

applicable because of the nonlinear nature of the effects, and because of body shadows. 
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SECTION 5 

BODY SHADOWS 

The analysis of the effects of shading of one part of the body by another Is a simplification 

of the method described in References 5 and 6.  The basic method is flexible enough to 

accommodate a configuration consisting of any number of flat plates and bodies of revolution. 

However, practical limitations of computer storage and running time must be considered. 

The method will be explained a s  though applied to solar radiation pressure effects, 

although it is  equally applicable to aerodynamic and albedo pressure effects. 

The entire satellite surface is subdivided into zones, and a central point is associated 

with each of these zones. An entire zone is considered sunlit if its central point is sunlit; 

the entire zone is considered shaded if  its central point is shaded. Thus, the shadow analysis 

treats only the shading of points. The gridding should be sufficiently fine for reasonable 

accuracy. It should conform to the gridding used fo r  structural dynamical analysis o r  

constitute a further subdivision thereof. 

The central point of a zone is tested for shading by every sub-body of the satellite 

configuration until it is found to be shaded by one of them. At this point, such testing 

for that central point is terminated. If the central point of a zone is not shaded by any 

sub-body, that zone is sunlit. 

The method will be illustrated by using several simple shapes as examples. Subsequently, 

the generalization to a general body of revolution will  be presented. 

5.1 FLAT PLATES 

A point A shaded by the Ith flat plate is shown in Figure 5-1. In order that the plate 

shades the point, two conditions are necessary and sufficient. The first is that the line 

through point A and parallel to the solar unit vector intersects the plane of the plate 

at some point P which lies within the boundaries of the plate. Secondly, point P must 

23 



be llupstreamt' (i. e., toward the sun) from 

point A. A sub-body composed of flat plates 

shades point A if any one o r  more of the flat 

plates shades the point. If none of the flat 

plates shades point A, that body does not 

shade point A. 
xLI %I 

/ 
xuI 

Figure 5-1. Shading by a Flat Plate 
The determination of whether a particular 

flat plate shades a particular point is facilitated by using a reference frame such that 

the flat plate lies in one of the reference planes. The coordinates of point P in this 

plane are given by X and Y P P' The vector from the origin to point P is 

G = X X + Y Y  11 P 11 P' (5-1) 

and Z The vector from the origin to point A is A' The coordinates of point A a re  X A' 'A' 

i = x x + Y Y + T I I Z A .  
11 A 11 A (5-2) 

The direction cosines of the solar unit vector in the Ith flat plate reference frame a re  

The vector from point P to point A has an unknown magnitude, U. ZlI' 
and S 

sxlI'  sYII' 
The vector is 

P I = %  s u + Y  s u + Zll SZII u. 
11 X1I 11 Y1I (5-3) 

From Figure 5-1, 

-4 -b 

P + $A = A. 

24 
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Equation 5-4 is written in terms of its rectangular components, 

+ s  u = x  xP x1 I A' 

A' 
+ s  U = Y  

yP Y1I 

s z l I  
= ZA. 

This is written in matrix form and solved for the unknowns X p' Yp' and u, 

Since 

- 
1 

0 

0 

zA 

s z l I  
u = -  

:::j 
s z l I  

a singularity could be encountered. 

xA 

Y 
A 

zA 

(5-5) 

(5-6) 

(5- 7) 

(5-8) 

(5-9) 

To prevent this, SzlI should be tested prior to any 

other computations. If its absolute value is less than a prescribed threshold o r  tolerance 

value, no computations should be done. In that case, the point should be considered not 

to be shaded by the flat plate. Likewise, if Z 
A 

considered not shaded. The case where both S 

trivial. If neither of these is zero, the solution to Equation 5-8 is given by Equation 5-9 

and by 

is close to zero, the point should be 

and 2 are  close to zero is considered z 11 A 

25 



xp = XA - SXIIU, (5-10) 

Yp - - YA - SYII u. (5- 11) 

If a negative value of U is obtained from Equation 5-9, point P is downstream from point 

A, and point A is not shaded by the Ith flat plate. In this case, the subsequent computations 

for point A and this flat plate a re  omitted. If U is positive, Xp and Y a r e  solved for and 

the determination made as to whether point P lies within the boundary of the flat plate. If 

X 

flat plate. If X lies within the range, it is necessary to test whether Y P P 
range Y (X ), Y (X ), where Y and Y describe the boundaries of the flat plate as L I P  U I P  LI UI 
functions of X, as shown in Figure 5-1. If Y P 
shaded by the flat plate. If Y 

P 

lies outside the range X X shown in Figure 5-1, point A is not shaded by the P LI' UI 
lies within the 

lies outside the range, point A is not 

lies inside the range, point A is shaded by the flat plate. P 

If point A is not shaded by the Ith flat plate, testing continues with the other flat plates. 

5 .2  SPHERES 

A point A shaded by the Jth sphere is shown 

in Figure 5-2. The triad representing the 

reference frame for this sphere is shown 

at one side for clarity. Actually, the origin 

of the reference frame is at the center of the 

sphere. 

- 
'2J 

Two conditions are necessary and sufficient 

for the sphere to shade point A. The first 

is that the line through point A and parallel to the solar unit vector 5 passes through the 

sphere. Secondly, the sphere must be "upstream7' from the point. 

Figure 5-2. Shading by a Sphere 
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The solar unit vector is expressed in terms of its components in the sphere reference frame, 

+ z  s s = x  2J s X2J + '2J'YZJ 25 225' 
(5-12) 

The equation of the plane passing through the center of the sphere and perpendicular to 

is 

+ Y + 'Z2J z = 0. 
'X2 J Y2 J 

The vector from the origin to point P is 

2 
+ z  -+ 

p = %  2 J x P  -k '2JYP 

(5-13) 

(5-14) zP' 

and Z a r e  the coordinates of point P. The vector from the origin to A is P' yP' P where X 

Th vector from point P to point A has the unknown magnitude U, 

4 

PA = X S U + iT2JSy2JU + Z2JS,2JU. 
2J X2J 

From Figure 5-2, 

4 -+ 4 

P + PA = A. 

This equation is written in terms of its rectangular components, 

(5-15) 

(5-16) 

(5-17) 
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+ S X J U  = x A' 
xP 

A' 

A' 

+ s  U = Y  
YP Y2J 

'P + 'Z2J 
u = z  

-+ 
Because ? is perpendicular to PA, their dot product is zero, 

+ z  s = 0. 
xPsX2 J -+ yP 'Y2J P 2 2 5  

(5-1 8) 

(5-19) 

(5-20) 

(5-21) 

The last four equations constitute a set of simultaneous equations with four unknowns. The 

solution is 

u = XASrn5 'A 'Y2J + 'A 'Z2J' 
(5-22) 

xp = XA - usx2J' (5-23) 

Yp = YA - USYZJ' (5-24) 

zp - - z* - usz2J. (5-25) 

If a negative value of U is obtained, point P is downstream from point A; and point A is 

not shaded by the J 

this sphere a re  omitted. 

th sphere. In this case, the subsequent computations for point A and 

If 

2 2 2 xp + Yp + zp (5-26) 
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is greater than the square of the radius of the sphere, the point A is not shaded by the 

sphere. Otherwise, it is shaded. 

In lieu of the expression 5-26, the equivalent expression, 

2 2 2 + z  - u ,  'A + yA A 
2 (5-26a) 

may be used. This leads to a shorter computation, since Equations 5-23, 5-24, and 5-25 

may be omitted. 

th 
If the point A is not shaded by the J sphere, testing continues with the other spheres. 

5 .3  CYLINDERS 

A point A shaded by the K 

unit vector s in the plane bf the figure, is shown in Figure 5-4. Here, the cylinder is 

represented by its two end circles and a rectangle, all shown on edge. The plane of the 

rectangle contains the axis of the cylinder and makes the maximum possible angle with 

the sun. The rectangle, which is bounded by the cylinder, is designated as the shadow 

rectangle; and the end circles a re  designated as shadow circles. These names arise 

from the two necessary and sufficient conditions for shading of point A by the cylinder. 

th 
cylinder is shown in Figure 5-3. Another view, with the solar 

+ A  

Y 6 
Figure 5-3. Shading by a Cylinder 

Figure 5-4. The Shadow Rectangle 
and Circles 
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The first is that the line through point A and parallel to the solar unit vector s must pass 

through one or  more of the plane surfaces, designated as shadow rectangle and shadow 

circles. The second condition is that the cylinder must be "upstream" from the point. 

The shadow circles a re  tested first. Point A, 

shaded by a shadow circle, is shown in 

Figure 5-5. The origin of the cylinder 

reference frame is at the geometric center 

of the cylinder, and the center of the circle 

is distant X from this origin. Then, the 

vector from the origin to point P is 
P 

+ - 
P = X  3 K X P  + '3KyP 

- 
+ Z 3 K Z P '  

Figure 5-5. Shading by a Circular 
Surface 

(5-27) 

The solar unit vector is expressed in the reference frame of the Kth cylinder, 

s = X3KSX3K + Y  3K s Y3K '3KSZ3K* 

The vector from the origin to point A is 

3K 'A' 
i = x  3 K X A  + '3KYA + z  

The vector from point P to point A is of unknown magnitude U, 

u + z  s $ A = ?  3K S X3K + '3KSY3K 3K Z 3 K U *  

30 
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(5-29) 

(5-30) 



From Figure 5-5, 

--. + + 
P + P A  = A. 

Equation 5-31 is written in terms of its rectangular components, 

X 3 K U  = A' 

Y 3 K U  = A' 

Z 3 K U  = A' 

+ s  
xP 

yP 

zP 

+ s  

+ s  

These constitute three simultaneous equations in the three &owns, U, Yp, and Z P' 
Because X is known, Equation 5-32 is first solved for U, P 

xA - xP 

'X3K 
u =  

Then, 

Yp = Y A -  'Y3KU' 

zp - - ZA-SZSKU.  

If 

n n 

(5-31) 

(5-32) 

(5-33) 

(5-34) 

(5-35) I 

, 
(5-36) I 

(5-37) 

L 4 

P 
+ z  

yP 
(5-38) 

I 
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is greater than the square of the radius of the cylinder, point A is not shaded by the circular 

surface. Otherwise, it is so shaded. 

is nearly zero, Equation 5-35 has a singularity. In such a case, the solar rays 
If 'X3K +I. 
are nearly perpendicular to the axis of the KU1 cylinder. In this case, the circular end can 

not shade point A. 

The test for the singularity should be done first. Then, if the singular case is not found, the 

general equations are  used. 

th 
The other flat circular end of the K 

difference is that the X 

If the singular case occurs with the first circular end, the other need not be tested. In the 

singular case, neither circular end can shade point A. 

cylinder is tested in the same manner. The only 

coordinate has a different numerical value for each circular end. P 

th The shadow rectangle of the K 

is tested next. A point A shaded by this 

rectangle is shown in Figure 5-6. The 

center of the rectangle is the origin of 

the reference frame of the K 

It is convenient to use a shadow reference 

frame, one of whose planes contains the 

shadow rectangle. This reference frame Shadow Rectangle 

is defined by the % 7 z orthonormal 

triad, and is obtained from the reference frame of the K 

'3K 
no Z component. The transformation is 

cylinder 

th 
cylinder. 

th Figure 5-6. Shading by the K 

th 3K R R 
cylinder by a rotation about the - 

axis through an angle such that the solar unit vector F h a s  a positive YR component and 

R 
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I - 2 z 
d s Y 3 K  +- 'Z3K 

- 

Y3K 
s 

Z3K 
-S 

- 

- 

Z3K 
s 

SY3K 
- 

(5-39) 

Equations 5-27 through 5-37 hold, but the rectangular components in the shadow reference 

frame are used. The counterparts of Equations 5-32 through 5-34 are 

Y + s  
'Y3K A Z 3 K Z A  u =  0 0 Y 

Q Z 

P L 

'Y3K +- 'Z3K 

- 
I 

(5-40) 

(5-41) 

(5-42) 

U is first computed from Equation 5-41. If it is negative, the shadow rectangle is downstream 

from point A, and therefore does not shade point A. If U is positive, X is computed from the 

solution of Equation 5-40, 
P 

xp - - XA - SXSKU. (5-43) 

The absolute value of X 

greater, point P lies outside the rectangle, and therefore does not shade point A. Otherwise, 

Z 

is compared with the half-length of the cylinder. If the former is P 

is computed from Equation 5-43. This is the transverse coordinate of point P in the Q 
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shadow reference frame. If the absolute value of Z 

cylinder, the rectangle does not shade point A. Otherwise, it does. 

is greater than the radius of the Q 

If 

2 2 
'Y 3K -t 'Z3K 

is nearly zero a singularity is encountered. 

(5-44) 

This expression should be tested first. If the singularity occurs, the solar rays a re  nearly 

parallel to the cylinder axis, and the rectangle does not shade point A. 

5.4 CONES AND CONE FRUSTUMS 

Although there are many points of similarity, a cone can not be treated as  a cylinder of vary- 

ing radius. This is because the shadow lines on the surface of the cone do not, in general, 

define a plane which contains the axis of the cone. However, the shadow lines, which a re  

the boundaries between the shaded and sunlit portions of the surface, are the key to the 

analysis. 

It is convenient to define a shadow reference frame for the cone in the same manner as was 

done for the cylinder. This frame is defined by the % yR zR triad of orthonormal vectors, 

with the origin at the apex of the cone (extended from the frustum if necessary). The % 
axis is positive in the direction from the apex outward along the cone. The zR plane 

contains the axis of the cone, and makes the maximum possible angle with the solar unit 

vector. The transformation from the cone reference frame to its shadow reference frame 

is given by Equation 5-39, although different subscripts would be used for the original cone 

reference frame. 

- 

The equation of the cone is 

2 2  2 2  
y + z  = b  x ,  (5-45) 
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where h is the tamgent of the half-angle at the apex. The unit vector normal to the surface 

of the cone at any point is 
2 -  - -si h x + Y - y + Z - z  - R H H 

N =  _ .  

b x J b s + l  

The solar unit vector is 

(5-46) 

(5-47) 

Along the shadow line on the surface of the cone, 

product is zero. This leads to an equation for Y 

and 

the value of y on the shadow line, 

a re  perpendicular, s o  their dot 

S’ 

sXR 2 
b x. - -  - ys s* 

From Equation 5-45, the corresponding value of z is 

= + -  
zs - 

(5-4 8) 

(5-49) 

These equations define two straight lines which are  the boundaries of the shadow triangle 

of the cone, o r  of the shadow trapezoid of the cone frustum. The shadow triangle or 

trapezoid plays the same role as the shadow rectangle of the cylinder. 

1 

I 

1 
The end circle of the cone, or the two end circles of the cone frustum, are  treated in the 

same manner as those of the cylinder. 

I 
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The form of Equation 5-49 indicates that several cases must be distinguished. 

First, if the solar rays make a sufficiently small angle with the cone axis, such that 

- 5  
c - b, 
sYR 

-XR 
(5-50) 

the entire conical surface is sunlit, and only the end circle(s) need be tested. Equations 

5-35 through 5-38 are  used for this purpose, with appropriate changes in the subscripts. 

Secondly, if 

(5-51) 
A ' b, 

sYR 

the solar rays make a sufficiently large angle 

with the cone axis such that the conical surface 

is only partly sunlit. This is the general case. 

A point A shaded by the shadow triangle is 

shown in Figure 5-7. The coordinates of 

point P, which casts the shadow in the shadow 

,, Yp, and Z The reference frame, a re  X 

vector from the origin at the apex, to point P is 

Figure 5-7. Shading by a Cone 

P' 

+ 
P = G X  + Y  Y + E  z P R P  R P '  

Since point P is in the plane of the shadow triangle, 

sXR b2 Xp. - Y, - Ys (X,) = - 
sYR 

(5-52) 

(5-53) 
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A, YA, and Z The The coordinates of point A in the shadow reference frame are X 

vector from the origin to point A is 
A' 

-B 

A = S X A + Y  Y + E  Z R A  R A D  

Equation 5-31 holds. This is rewritten in terms of its rectangular components, 

x + s  u = XA, 

Y +smu = YA, 

zp - - ZA. 

P X R  

P 

Equation 5-58 is explicitly solved for Z 

simultaneous linear equations with the three unknowns, 3, Yp, andU. 

Equations 5-53, 5-56, and 5-57 are  three P' 

Their solution is 

- sYR(sYRxA-sXR Y )  A 
2 2  2 

- b  SxR 

9 

xP - 

2 
s X R ( s Y R x A - s X R  Y )  A , 

Y- = 

(5-54) 

(5-55) 

(5-56) 

(5-57) 

(5-58) 

(5-59) 

(5-60) - P  2 2  2 
- b  SxR 'Y R 
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2 
Y - b  SmXA 'YR A 

'Y R 
2 u =  

Y 3 2  
- b  Sm 

(5-61) 

The value Xp is used for x in Equation 5-49. Equation 5-49 is then solved for Z S' If IzA/ 
is equal to or  less than Z 

shaded. 

, point A is shaded by the conical surface. Otherwise, it is not I S I  

The third case is that for which 

Z -b. sYR 

sxR 
(5-62) 

Then, the entire conical surface is shaded, and only the end circle(s) need be tested. 

5 .5  GENERAL BODIES O F  REVOLUTION 

The general body of revolution may be considered as a sequence of coaxial cone frustums, 

of vanishingly small  lengths. A shadow reference frame is defined in the same manner as 

for the cylinder and the cone. Equations 5-47, 5-52, and 5-54 through 5-58 hold. 

If the profile of the surface is represented in any plane through the axis of symmetry by 

r = f (x), (5-63) 

where r is the radius at any point along the axis, then the equation of the surface is 

(5-64) 
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The unit vector normal to the surface at any point is 

-% f g + Y R  y + E, z 
iu’ 7 

f 4 - z -  
where f stands for f (x), and 

df 
dx 

g =  - .  

On the shadow line, the dot product of 5 and E is zero. This yields 

= + -  4 m .  sxR 
YR sYR zs - 

Because Y is on the shadow surface, P 

(5-66) 

(5-67) 

(5-68) 

(5-69) 

If U is eliminated from Equations 5-56 and 5-57, the result is a linear relation between 

X andYp, P 

sYR xp - sm Yp - - sm XA - sxR YA. (5-70) 



P’ This is combined with Equation 5-69, to eliminate Y 

(5-71) 

This equation involves only X for which it is solved. The solution is used in Equation 

Then 1Z.I is compared to Z as in the case of the cone, and the same 5-68 to find Zs. 

conclusion applies. 

P’ 

1 SI 

Different cases, which are similar to those of the cone, must be distinguished. If 

(5-72) 

the general case exists, and the foregoing equations are valid. If 

the conical surface is either entirely sunlit or  entirely shaded. Then only the end circle(s) 

need be tested. 

In any case, the end circle(s) a r e  tested in the same manner as for the cylinder. 
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cwrmnv 6 

FORCES AND TORQUES 

" Y W  L I V I  

The forces and torques on bodies of various shapes a re  developed in terms of solar radiation 

pressure. The equations so derived are  easily extended to aerodynamic and albedo pressure 

by simple analogies which a re  described. 

The basic equation for solar radiation pressure effects is the equation for  the element of 

solar force, d F 
2 

on an element of body surface area, dA. 
S' 

d2FS = PSdA s (E s) (1 - p s )  -+ 2sps  (5- N )  - 2  $. - 2 -  N p  ( 3 -  z) 
3 D  

Here, P 

satellite, 5 is the unit vector normal to dA and positive inward 

of the surface, and p is the diffuse reflectance of the surface. This equation is derived in 

Section 11 of Reference 3,  and the major assumptions used are  stated there. 

is the solar pressure, 3 is a unit vector in the direction of the solar flux at the 
S 

is the specular reflectance ' ps 

D 

The basic equation for aerodynamic pressure effects at high altitudes is also the element 

of force on an element of area. 

d 2 FA = PAdA (V* E) ("'3 2 GCV) 

P 

C 

derived in Section 1 7  of Reference 3, and the major assumptions are  stated there. 

is the aerodynamic pressure, v is a unit vector in the direction of the relative wind, and 

is the ratio of particle reflected velocity to particle incident velocity. This equation is 
A 

V 

Equation 6-2 is exactly analogous to Equation 6-1, if PA is substituted for P 

for s, p is set  equal to zero, and C S V 

v is substituted S' 

D' is substituted for p 
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The effect of the albedo flux from each individual earth zone is like the effect of the solar 

flux, to the extent that the approximation of the zone as a point source is a good one. The 

basic equation for the albedo force, due to the reflection from a single earth zone, is similar 

to Equation 6-1. However, the magnitude of the pressure is different, and the unit vector 

in the direction of the albedo flux must be substituted for s. 

The magnitude and direction of the albedo flux are derived in Section 4. 

The solar force on a flat plate is given by Equation 6-1, with the entire area A substituted 

for the element of area, dA. Although the force is actually distributed over the surface as 

a uniform pressure, for the purpose of computing the solar torque, the force is considered 

to be applied to the centroid of the area. The torque is usually computed about axes through 

a specified reference point. For the flat plate, the torque is the vector crossproduct of the 

moment arm from the reference point to the centroid of the plate and the force. 

Any body may be approximated as a combination of flat plates. Such a representation is 

especially advantageous in cases where the shadow geometry is complicated or where 

structural flexibility produces appreciable distortion. 

It is not desirable to limit the analysis to flat plates and aggregations of flat plates. This is 

because situations will arise where a large rigid body is not shaded except by itself; and 

if it is a body of revolution, advantage of the consequent symmetry may be taken. 

The solar torque on a sphere, not shaded by another body, is 

where A is the radius of the sphere, and “R is the vector from the reference point to the S S 
center of the sphere. 
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The equations for the solar force and torque on a cylinder have two uses. The first, already 

mentioned, is the case of a rigid cylinder not shaded by another body. The second is the case 

of a long thin rod or  tube, such as a gravity radient rod, an instrument boom, or  a connect- 

ing member of a large composite structure, where the following especially simple shadow 

analysis yields a good approximation. If the length is much greater than the diameter, the 

former may be subdivided into sufficiently short segments so that each one may be considered 

entirely sunlit o r  entirely shaded. Then the shadow analysis of each segment may be simpli- 

fied by considering a single reference or central point in that segment. This is simpler than 

dividing the periphery of the segment to obtain a number of zones to be approximated as 

flat plates . 

The solar forces and torques on a cylinder are most conveniently expressed in a reference 

frame one of whose planes contains the sun. The shadow reference frame previously 

described is suitable and convenient. The component of the solar force on the cylindrical 

surface is 

= 2 P R  L S FSxR s c c XR - p &  

where R is the radius, and Lc the length of the cylinder. The 7 component is C R 

FSYR 

(6-4) 

(6-5) 

The 2 component is zero. R 

For the purpose of torque computations, the vector from any reference point to the geometric 

center of the cylinder is expressed as 

-B 

RG = S X  G +Y R G  Y + z R Z G  (6-6) 
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. 

Then the vector from the reference point to any surface element is 

R = R  - N R C + % x ,  G (6-7) 

where x is the length coordinate. 

The torque about axes passing through the reference point is the vector crossproduct of this 

vector and the force. The component of the torque is 

= - Z  F S X R  G SYR' 

The T component is R 

= Z  F TSYR G SXR' 

The Z component is R 

2 = X  F - Y  F P R  TS ZR G SYR G S X R  2 S C LC sXRsYR(l-pS)  

(6-9) 

(6-10) 

For long thin'rods o r  tubes, the contribution of the radius to the moment arm may be 

neglected, by deleting the last term of the last equation. 

If the cylindrical surface is not uniform, the foregoing equations are  not valid for the 

cylinder as a whole. If the surface is subdivided into cylindrical "bands, '' each of which 

has uniform characteristics, each band is considered as a cylinder, and the foregoing 

equations a re  applied to each one separately. If the surface is subdivided in any other 

manner, it is simplest to form a grid of zones sufficiently small to be treated as flat plates. 
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. 

The solar forces and torques on a cone a re  calculated by using the same reference frame as 

for the shadow analysis and also a cylindrical coordinate frame. The apex of the cone is the 

origin of both frames. The cylindrical angular coordinate is $, and the radial coordinate 

is r. $I is zero along the line of symmetry of the sunlit portion of the surface. 

Then 

2 r 
2 2  

= y  + z  

= bx 

=-r cos $ 

= r s i n $  

The unit normal vector, positive inward toward the sunlit surface,is 

The solar unit vector is given by Equation 5-47, and 

(6-11) 

(6-12) 

(6-13) 

(6-14) 

(6-15) 

(6-16) 

(6-17) 
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The element of area on the conical surface is 

dA = b x  d b 2  + 1 dx d@ 

The components of the element of force on dA, in the shadow reference frame, a re  

= P S bxdx d$ (bSXR +SyR COS t)) Fsm 
2 

= Ps bx dx d$ ( bSXR + SYR cos $) [ Sm (l-ps) 
2 
FSyR 

2 p  cos 4 2 

(b Sm + SYR cos +) S + 

(b Sm + S  cos t ) )  YR = P bx s in0 dxd$ 
2 

FSZR S 

P S  
2 + 

b + 1  

(6-1 8) 

(6-19) 

(6-20) 

(6-21) 

The same cases used previously a re  defined here. The first case is defined by Equation 5-50. 

The whole conical surface is sunlit, and the solar forces are  computed by integrating the above 

equations with respect to $ between the limits of -7r and +n, and with respect to x between the 
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limits of X, and Xvy. These values of x correspond to the ends of the cone frustum. For 

a cone, X is zero. The results of the integration are the components of the solar force L 
in the shadow reference frame. 

L V 

2 
2 2  2 2 3PD sxR FSXR = r P b  S (Xu - X L )  [Sm ( l + p s )  + 

PS 2 
( sYR 

+ 
b2 + 1 

(6-22) 

For computing solar torques, the vector from a specified reference point to the apex of 

the cone is designated 

+ 
R G = % X  + y  Y + z  Z 

G R G  R G '  
(6-25) 

Then the vector from the reference point to the element of area, dA, is 

- - - 
2 = (XG + x) + YR (YG - b x cos 9) + ZR ( Z G  - bx sin $). (6-26) 

The solar torque, about axes passing through the reference point, is the vector crossproduct 

of a and the solar force. The integration is performed in the same manner as for the force 

components. This yields the torque components, 



= - Z  F TSXR G SYR' 

= Z  F 
*SYR G SXR' 

= X  F - Y  F + 3 2 rPSbSm(XU 3 -X:) 
TSZR G SYR G SXR 

(6-27) 

(6-28) 

(6-29) 

The second case is defined by Equation 5-51. In this case, the conical surface is only 

partly sunlit. On the shadow line, s and fi are perpendicular. Setting the right hand 

member of Equation 6-17 equal to zero yields an equation for I,!),, the value of i,!~ on the 

shadow line. 

cosI,!)s = - 
sYR ' 

sin Q, 

(6-30) 

(6-31) 

1 

-1 
9, 

1 
(6-32) , 

The solar forces are  computed by integrating Equations 6-19 through 6-21 with respect 

to I/I between the limits of zero and $s, multiplying by two, and integrating with respect to 

x between the limits of X and Xu. The results are the components of the solar force in 

the shadow reference frame. 

I 

L 
I 
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c 

3b Sm SyR sin $s ] 1, 2 2  += le, ( 2b SxR+SyR 
b2 + 1 

2 Ps + + - 1 sin$ (Z., 2 2  + b  Sm2)]\, 
+ b 2 + 1  p* s 3 S 

= 0. FS ZR 

(6-33) 

(6-34) 

(6-35) 

The solar torques are computed in the same manner as for Case I. Equations 6-25 through 

6-28 hold for Case II, also. The component of the torque is R 

= X  F TSZR G S Y R  

1 + b S X R s i n $  S ) + - 2 3 b S m S Y R $ S  

+ sin+s (2s* 2 + b2 SXR (6-36) 
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If 

2 -b, sYR 

sxR 
(6-37) 

the conical surface is entirely shaded. This is Case III, for which the solar forces and 

torques on the conical surface a re  zero. 

In any case, the flat end of the cone, or the two ends of the cone frustum, are  treated as 

flat plates if they a re  sunlit. 

The solar forces and torques on a general body of revolution are computed by considering 

the body as a sequence of coaxial cone frustums of vanishingly small lengths. The profile 

is again represented by Equation 5-63. Equations 5-64 and 5-66 hold, as well as Equations 

6-11 through 6-21, with g substituted for b where it occurs without x, and with f substituted 

for bx. 

If 

- 5  - g, 
sYR 

sxR 
(6-38) 

for any range of values of x, then Case I exists throughout that range. The integration of 

Equations 6-19 through 6-21 with respect to t,6 yields, 

a 2 
d Fsm = 27r P S fg dx [ SxR2 (1 +PSI  + 3 P, S x R  

31 - 2 Sm +- PS (s*2 
2 

g + 1  
(6-39) 
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P ,  Y 2p 
= 2 7 r P S S * f d x  g S m ( l - p s ) +  2 

FsYR i ,J92+1+ g + 1  

= o  FSZR 

These expressions are ,&grated with respec to x throughou the range for which 

. (6-40) 

(6-41) 

mdition 

6-38 holds. Over this same range, Equations 6-25 through 6-28 hold. The component R 

(6-42) 

of the torque is 

- Y  F 
XGFSYR G SXR 

plus the integral of 

d TAm - - x dFSn + n P  S H d x  S Y R  

with respect to x. 

If 

3 d 2  g + 1  

(6 -43) 

for any range of values of x, then Case TI exists throughout that range. Equations 6-30 

through 6-32 hold, with g substituted for b. The integration of Equations 6-19 through 6-21 

with respect to and multiplication by two yields 
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= 0. FSZR 

(6-45) 

(6-46) 

(6-47) 

The expressions are integrated with respect to x throughout the range for which Condition 

6-44 holds. Over this same range, Equations 6-25 through 6-28 hold, with f substituted for 

bx in Equation 6-26. The z component of the torque is R 

- Y  F (6-48) 
XGFSyR G SXR 

plus the integral of 
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c 

T 
= x d FSm TSZR 

911, (6-49) 
+ 4 p s g  [gs,s, 11, s + -  3 1 sin$, (2sm + g  sxR 2 2  

g2 + 1 

with respect to x. 

If 

- 5  - -g, 
,YR 

,XR 
(6-50) 

for  any range of values of x, the surface is entirely shaded throughout that range, and the 

solar forces and torques are zero. 

In any case, the flat ends are treated as flat plates if they are sunlit. 
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